3.1.17 \(\int (a+b \tan (c+d x))^3 (B \tan (c+d x)+C \tan ^2(c+d x)) \, dx\) [17]

Optimal. Leaf size=165 \[ -\left (\left (3 a^2 b B-b^3 B+a^3 C-3 a b^2 C\right ) x\right )-\frac {\left (a^3 B-3 a b^2 B-3 a^2 b C+b^3 C\right ) \log (\cos (c+d x))}{d}+\frac {b \left (a^2 B-b^2 B-2 a b C\right ) \tan (c+d x)}{d}+\frac {(a B-b C) (a+b \tan (c+d x))^2}{2 d}+\frac {B (a+b \tan (c+d x))^3}{3 d}+\frac {C (a+b \tan (c+d x))^4}{4 b d} \]

[Out]

-(3*B*a^2*b-B*b^3+C*a^3-3*C*a*b^2)*x-(B*a^3-3*B*a*b^2-3*C*a^2*b+C*b^3)*ln(cos(d*x+c))/d+b*(B*a^2-B*b^2-2*C*a*b
)*tan(d*x+c)/d+1/2*(B*a-C*b)*(a+b*tan(d*x+c))^2/d+1/3*B*(a+b*tan(d*x+c))^3/d+1/4*C*(a+b*tan(d*x+c))^4/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {3711, 3609, 3606, 3556} \begin {gather*} \frac {b \left (a^2 B-2 a b C-b^2 B\right ) \tan (c+d x)}{d}-\frac {\left (a^3 B-3 a^2 b C-3 a b^2 B+b^3 C\right ) \log (\cos (c+d x))}{d}-x \left (a^3 C+3 a^2 b B-3 a b^2 C-b^3 B\right )+\frac {(a B-b C) (a+b \tan (c+d x))^2}{2 d}+\frac {B (a+b \tan (c+d x))^3}{3 d}+\frac {C (a+b \tan (c+d x))^4}{4 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[c + d*x])^3*(B*Tan[c + d*x] + C*Tan[c + d*x]^2),x]

[Out]

-((3*a^2*b*B - b^3*B + a^3*C - 3*a*b^2*C)*x) - ((a^3*B - 3*a*b^2*B - 3*a^2*b*C + b^3*C)*Log[Cos[c + d*x]])/d +
 (b*(a^2*B - b^2*B - 2*a*b*C)*Tan[c + d*x])/d + ((a*B - b*C)*(a + b*Tan[c + d*x])^2)/(2*d) + (B*(a + b*Tan[c +
 d*x])^3)/(3*d) + (C*(a + b*Tan[c + d*x])^4)/(4*b*d)

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3606

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b
*d)*x, x] + (Dist[b*c + a*d, Int[Tan[e + f*x], x], x] + Simp[b*d*(Tan[e + f*x]/f), x]) /; FreeQ[{a, b, c, d, e
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int (a+b \tan (c+d x))^3 \left (B \tan (c+d x)+C \tan ^2(c+d x)\right ) \, dx &=\frac {C (a+b \tan (c+d x))^4}{4 b d}+\int (a+b \tan (c+d x))^3 (-C+B \tan (c+d x)) \, dx\\ &=\frac {B (a+b \tan (c+d x))^3}{3 d}+\frac {C (a+b \tan (c+d x))^4}{4 b d}+\int (a+b \tan (c+d x))^2 (-b B-a C+(a B-b C) \tan (c+d x)) \, dx\\ &=\frac {(a B-b C) (a+b \tan (c+d x))^2}{2 d}+\frac {B (a+b \tan (c+d x))^3}{3 d}+\frac {C (a+b \tan (c+d x))^4}{4 b d}+\int (a+b \tan (c+d x)) \left (-2 a b B-a^2 C+b^2 C+\left (a^2 B-b^2 B-2 a b C\right ) \tan (c+d x)\right ) \, dx\\ &=-\left (3 a^2 b B-b^3 B+a^3 C-3 a b^2 C\right ) x+\frac {b \left (a^2 B-b^2 B-2 a b C\right ) \tan (c+d x)}{d}+\frac {(a B-b C) (a+b \tan (c+d x))^2}{2 d}+\frac {B (a+b \tan (c+d x))^3}{3 d}+\frac {C (a+b \tan (c+d x))^4}{4 b d}+\left (a^3 B-3 a b^2 B-3 a^2 b C+b^3 C\right ) \int \tan (c+d x) \, dx\\ &=-\left (3 a^2 b B-b^3 B+a^3 C-3 a b^2 C\right ) x-\frac {\left (a^3 B-3 a b^2 B-3 a^2 b C+b^3 C\right ) \log (\cos (c+d x))}{d}+\frac {b \left (a^2 B-b^2 B-2 a b C\right ) \tan (c+d x)}{d}+\frac {(a B-b C) (a+b \tan (c+d x))^2}{2 d}+\frac {B (a+b \tan (c+d x))^3}{3 d}+\frac {C (a+b \tan (c+d x))^4}{4 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.10, size = 209, normalized size = 1.27 \begin {gather*} \frac {-6 i (a+i b)^4 B \log (i-\tan (c+d x))+6 i (a-i b)^4 B \log (i+\tan (c+d x))-12 b^2 \left (-6 a^2+b^2\right ) B \tan (c+d x)+24 a b^3 B \tan ^2(c+d x)+4 b^4 B \tan ^3(c+d x)+3 C (a+b \tan (c+d x))^4-6 (a B+b C) \left ((i a-b)^3 \log (i-\tan (c+d x))-(i a+b)^3 \log (i+\tan (c+d x))+6 a b^2 \tan (c+d x)+b^3 \tan ^2(c+d x)\right )}{12 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[c + d*x])^3*(B*Tan[c + d*x] + C*Tan[c + d*x]^2),x]

[Out]

((-6*I)*(a + I*b)^4*B*Log[I - Tan[c + d*x]] + (6*I)*(a - I*b)^4*B*Log[I + Tan[c + d*x]] - 12*b^2*(-6*a^2 + b^2
)*B*Tan[c + d*x] + 24*a*b^3*B*Tan[c + d*x]^2 + 4*b^4*B*Tan[c + d*x]^3 + 3*C*(a + b*Tan[c + d*x])^4 - 6*(a*B +
b*C)*((I*a - b)^3*Log[I - Tan[c + d*x]] - (I*a + b)^3*Log[I + Tan[c + d*x]] + 6*a*b^2*Tan[c + d*x] + b^3*Tan[c
 + d*x]^2))/(12*b*d)

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 213, normalized size = 1.29

method result size
norman \(\left (-3 B \,a^{2} b +B \,b^{3}-C \,a^{3}+3 C a \,b^{2}\right ) x +\frac {\left (3 B \,a^{2} b -B \,b^{3}+C \,a^{3}-3 C a \,b^{2}\right ) \tan \left (d x +c \right )}{d}+\frac {C \,b^{3} \left (\tan ^{4}\left (d x +c \right )\right )}{4 d}+\frac {b \left (3 B a b +3 C \,a^{2}-b^{2} C \right ) \left (\tan ^{2}\left (d x +c \right )\right )}{2 d}+\frac {b^{2} \left (B b +3 C a \right ) \left (\tan ^{3}\left (d x +c \right )\right )}{3 d}+\frac {\left (B \,a^{3}-3 B a \,b^{2}-3 C \,a^{2} b +C \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d}\) \(180\)
derivativedivides \(\frac {\frac {C \,b^{3} \left (\tan ^{4}\left (d x +c \right )\right )}{4}+\frac {B \,b^{3} \left (\tan ^{3}\left (d x +c \right )\right )}{3}+C a \,b^{2} \left (\tan ^{3}\left (d x +c \right )\right )+\frac {3 B a \,b^{2} \left (\tan ^{2}\left (d x +c \right )\right )}{2}+\frac {3 C \,a^{2} b \left (\tan ^{2}\left (d x +c \right )\right )}{2}-\frac {C \,b^{3} \left (\tan ^{2}\left (d x +c \right )\right )}{2}+3 B \,a^{2} b \tan \left (d x +c \right )-B \,b^{3} \tan \left (d x +c \right )+C \,a^{3} \tan \left (d x +c \right )-3 C a \,b^{2} \tan \left (d x +c \right )+\frac {\left (B \,a^{3}-3 B a \,b^{2}-3 C \,a^{2} b +C \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (-3 B \,a^{2} b +B \,b^{3}-C \,a^{3}+3 C a \,b^{2}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{d}\) \(213\)
default \(\frac {\frac {C \,b^{3} \left (\tan ^{4}\left (d x +c \right )\right )}{4}+\frac {B \,b^{3} \left (\tan ^{3}\left (d x +c \right )\right )}{3}+C a \,b^{2} \left (\tan ^{3}\left (d x +c \right )\right )+\frac {3 B a \,b^{2} \left (\tan ^{2}\left (d x +c \right )\right )}{2}+\frac {3 C \,a^{2} b \left (\tan ^{2}\left (d x +c \right )\right )}{2}-\frac {C \,b^{3} \left (\tan ^{2}\left (d x +c \right )\right )}{2}+3 B \,a^{2} b \tan \left (d x +c \right )-B \,b^{3} \tan \left (d x +c \right )+C \,a^{3} \tan \left (d x +c \right )-3 C a \,b^{2} \tan \left (d x +c \right )+\frac {\left (B \,a^{3}-3 B a \,b^{2}-3 C \,a^{2} b +C \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (-3 B \,a^{2} b +B \,b^{3}-C \,a^{3}+3 C a \,b^{2}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{d}\) \(213\)
risch \(\frac {2 i B \,a^{3} c}{d}-3 i B a \,b^{2} x +i B \,a^{3} x +\frac {2 i C \,b^{3} c}{d}-3 B \,a^{2} b x +B \,b^{3} x -C \,a^{3} x +3 C a \,b^{2} x +\frac {2 i \left (-12 C a \,b^{2}+3 C \,a^{3}+9 B \,a^{2} b -4 B \,b^{3}+27 B \,a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}+9 B \,a^{2} b \,{\mathrm e}^{6 i \left (d x +c \right )}+27 B \,a^{2} b \,{\mathrm e}^{4 i \left (d x +c \right )}-9 i C \,a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}-18 i C \,a^{2} b \,{\mathrm e}^{4 i \left (d x +c \right )}-9 i C \,a^{2} b \,{\mathrm e}^{6 i \left (d x +c \right )}-6 B \,b^{3} {\mathrm e}^{6 i \left (d x +c \right )}-10 B \,b^{3} {\mathrm e}^{2 i \left (d x +c \right )}-12 B \,b^{3} {\mathrm e}^{4 i \left (d x +c \right )}-18 i B a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-9 i B a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-9 i B a \,b^{2} {\mathrm e}^{6 i \left (d x +c \right )}-36 C a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+6 i C \,b^{3} {\mathrm e}^{2 i \left (d x +c \right )}-18 C a \,b^{2} {\mathrm e}^{6 i \left (d x +c \right )}+6 i C \,b^{3} {\mathrm e}^{4 i \left (d x +c \right )}+6 i C \,b^{3} {\mathrm e}^{6 i \left (d x +c \right )}-30 C a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+3 C \,a^{3} {\mathrm e}^{6 i \left (d x +c \right )}+9 C \,a^{3} {\mathrm e}^{2 i \left (d x +c \right )}+9 C \,a^{3} {\mathrm e}^{4 i \left (d x +c \right )}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-3 i C \,a^{2} b x -\frac {6 i B a \,b^{2} c}{d}+i C \,b^{3} x -\frac {6 i C \,a^{2} b c}{d}-\frac {a^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) B}{d}+\frac {3 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) B a \,b^{2}}{d}+\frac {3 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) C \,a^{2} b}{d}-\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) C \,b^{3}}{d}\) \(579\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^3*(B*tan(d*x+c)+C*tan(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/4*C*b^3*tan(d*x+c)^4+1/3*B*b^3*tan(d*x+c)^3+C*a*b^2*tan(d*x+c)^3+3/2*B*a*b^2*tan(d*x+c)^2+3/2*C*a^2*b*t
an(d*x+c)^2-1/2*C*b^3*tan(d*x+c)^2+3*B*a^2*b*tan(d*x+c)-B*b^3*tan(d*x+c)+C*a^3*tan(d*x+c)-3*C*a*b^2*tan(d*x+c)
+1/2*(B*a^3-3*B*a*b^2-3*C*a^2*b+C*b^3)*ln(1+tan(d*x+c)^2)+(-3*B*a^2*b+B*b^3-C*a^3+3*C*a*b^2)*arctan(tan(d*x+c)
))

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 179, normalized size = 1.08 \begin {gather*} \frac {3 \, C b^{3} \tan \left (d x + c\right )^{4} + 4 \, {\left (3 \, C a b^{2} + B b^{3}\right )} \tan \left (d x + c\right )^{3} + 6 \, {\left (3 \, C a^{2} b + 3 \, B a b^{2} - C b^{3}\right )} \tan \left (d x + c\right )^{2} - 12 \, {\left (C a^{3} + 3 \, B a^{2} b - 3 \, C a b^{2} - B b^{3}\right )} {\left (d x + c\right )} + 6 \, {\left (B a^{3} - 3 \, C a^{2} b - 3 \, B a b^{2} + C b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 12 \, {\left (C a^{3} + 3 \, B a^{2} b - 3 \, C a b^{2} - B b^{3}\right )} \tan \left (d x + c\right )}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^3*(B*tan(d*x+c)+C*tan(d*x+c)^2),x, algorithm="maxima")

[Out]

1/12*(3*C*b^3*tan(d*x + c)^4 + 4*(3*C*a*b^2 + B*b^3)*tan(d*x + c)^3 + 6*(3*C*a^2*b + 3*B*a*b^2 - C*b^3)*tan(d*
x + c)^2 - 12*(C*a^3 + 3*B*a^2*b - 3*C*a*b^2 - B*b^3)*(d*x + c) + 6*(B*a^3 - 3*C*a^2*b - 3*B*a*b^2 + C*b^3)*lo
g(tan(d*x + c)^2 + 1) + 12*(C*a^3 + 3*B*a^2*b - 3*C*a*b^2 - B*b^3)*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 4.13, size = 178, normalized size = 1.08 \begin {gather*} \frac {3 \, C b^{3} \tan \left (d x + c\right )^{4} + 4 \, {\left (3 \, C a b^{2} + B b^{3}\right )} \tan \left (d x + c\right )^{3} - 12 \, {\left (C a^{3} + 3 \, B a^{2} b - 3 \, C a b^{2} - B b^{3}\right )} d x + 6 \, {\left (3 \, C a^{2} b + 3 \, B a b^{2} - C b^{3}\right )} \tan \left (d x + c\right )^{2} - 6 \, {\left (B a^{3} - 3 \, C a^{2} b - 3 \, B a b^{2} + C b^{3}\right )} \log \left (\frac {1}{\tan \left (d x + c\right )^{2} + 1}\right ) + 12 \, {\left (C a^{3} + 3 \, B a^{2} b - 3 \, C a b^{2} - B b^{3}\right )} \tan \left (d x + c\right )}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^3*(B*tan(d*x+c)+C*tan(d*x+c)^2),x, algorithm="fricas")

[Out]

1/12*(3*C*b^3*tan(d*x + c)^4 + 4*(3*C*a*b^2 + B*b^3)*tan(d*x + c)^3 - 12*(C*a^3 + 3*B*a^2*b - 3*C*a*b^2 - B*b^
3)*d*x + 6*(3*C*a^2*b + 3*B*a*b^2 - C*b^3)*tan(d*x + c)^2 - 6*(B*a^3 - 3*C*a^2*b - 3*B*a*b^2 + C*b^3)*log(1/(t
an(d*x + c)^2 + 1)) + 12*(C*a^3 + 3*B*a^2*b - 3*C*a*b^2 - B*b^3)*tan(d*x + c))/d

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 313 vs. \(2 (151) = 302\).
time = 0.16, size = 313, normalized size = 1.90 \begin {gather*} \begin {cases} \frac {B a^{3} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - 3 B a^{2} b x + \frac {3 B a^{2} b \tan {\left (c + d x \right )}}{d} - \frac {3 B a b^{2} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {3 B a b^{2} \tan ^{2}{\left (c + d x \right )}}{2 d} + B b^{3} x + \frac {B b^{3} \tan ^{3}{\left (c + d x \right )}}{3 d} - \frac {B b^{3} \tan {\left (c + d x \right )}}{d} - C a^{3} x + \frac {C a^{3} \tan {\left (c + d x \right )}}{d} - \frac {3 C a^{2} b \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {3 C a^{2} b \tan ^{2}{\left (c + d x \right )}}{2 d} + 3 C a b^{2} x + \frac {C a b^{2} \tan ^{3}{\left (c + d x \right )}}{d} - \frac {3 C a b^{2} \tan {\left (c + d x \right )}}{d} + \frac {C b^{3} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {C b^{3} \tan ^{4}{\left (c + d x \right )}}{4 d} - \frac {C b^{3} \tan ^{2}{\left (c + d x \right )}}{2 d} & \text {for}\: d \neq 0 \\x \left (a + b \tan {\left (c \right )}\right )^{3} \left (B \tan {\left (c \right )} + C \tan ^{2}{\left (c \right )}\right ) & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**3*(B*tan(d*x+c)+C*tan(d*x+c)**2),x)

[Out]

Piecewise((B*a**3*log(tan(c + d*x)**2 + 1)/(2*d) - 3*B*a**2*b*x + 3*B*a**2*b*tan(c + d*x)/d - 3*B*a*b**2*log(t
an(c + d*x)**2 + 1)/(2*d) + 3*B*a*b**2*tan(c + d*x)**2/(2*d) + B*b**3*x + B*b**3*tan(c + d*x)**3/(3*d) - B*b**
3*tan(c + d*x)/d - C*a**3*x + C*a**3*tan(c + d*x)/d - 3*C*a**2*b*log(tan(c + d*x)**2 + 1)/(2*d) + 3*C*a**2*b*t
an(c + d*x)**2/(2*d) + 3*C*a*b**2*x + C*a*b**2*tan(c + d*x)**3/d - 3*C*a*b**2*tan(c + d*x)/d + C*b**3*log(tan(
c + d*x)**2 + 1)/(2*d) + C*b**3*tan(c + d*x)**4/(4*d) - C*b**3*tan(c + d*x)**2/(2*d), Ne(d, 0)), (x*(a + b*tan
(c))**3*(B*tan(c) + C*tan(c)**2), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 2870 vs. \(2 (159) = 318\).
time = 2.47, size = 2870, normalized size = 17.39 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^3*(B*tan(d*x+c)+C*tan(d*x+c)^2),x, algorithm="giac")

[Out]

-1/12*(12*C*a^3*d*x*tan(d*x)^4*tan(c)^4 + 36*B*a^2*b*d*x*tan(d*x)^4*tan(c)^4 - 36*C*a*b^2*d*x*tan(d*x)^4*tan(c
)^4 - 12*B*b^3*d*x*tan(d*x)^4*tan(c)^4 + 6*B*a^3*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2
*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^4*tan(c)^4 - 18*C*a^2*b*log(4*(tan(d*
x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1)
)*tan(d*x)^4*tan(c)^4 - 18*B*a*b^2*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + ta
n(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^4*tan(c)^4 + 6*C*b^3*log(4*(tan(d*x)^4*tan(c)^2 - 2
*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^4*tan(
c)^4 - 48*C*a^3*d*x*tan(d*x)^3*tan(c)^3 - 144*B*a^2*b*d*x*tan(d*x)^3*tan(c)^3 + 144*C*a*b^2*d*x*tan(d*x)^3*tan
(c)^3 + 48*B*b^3*d*x*tan(d*x)^3*tan(c)^3 - 18*C*a^2*b*tan(d*x)^4*tan(c)^4 - 18*B*a*b^2*tan(d*x)^4*tan(c)^4 + 9
*C*b^3*tan(d*x)^4*tan(c)^4 - 24*B*a^3*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 +
 tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^3*tan(c)^3 + 72*C*a^2*b*log(4*(tan(d*x)^4*tan(c)
^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^
3*tan(c)^3 + 72*B*a*b^2*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 -
2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^3*tan(c)^3 - 24*C*b^3*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^
3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^3*tan(c)^3 + 12*
C*a^3*tan(d*x)^4*tan(c)^3 + 36*B*a^2*b*tan(d*x)^4*tan(c)^3 - 36*C*a*b^2*tan(d*x)^4*tan(c)^3 - 12*B*b^3*tan(d*x
)^4*tan(c)^3 + 12*C*a^3*tan(d*x)^3*tan(c)^4 + 36*B*a^2*b*tan(d*x)^3*tan(c)^4 - 36*C*a*b^2*tan(d*x)^3*tan(c)^4
- 12*B*b^3*tan(d*x)^3*tan(c)^4 + 72*C*a^3*d*x*tan(d*x)^2*tan(c)^2 + 216*B*a^2*b*d*x*tan(d*x)^2*tan(c)^2 - 216*
C*a*b^2*d*x*tan(d*x)^2*tan(c)^2 - 72*B*b^3*d*x*tan(d*x)^2*tan(c)^2 - 18*C*a^2*b*tan(d*x)^4*tan(c)^2 - 18*B*a*b
^2*tan(d*x)^4*tan(c)^2 + 6*C*b^3*tan(d*x)^4*tan(c)^2 + 36*C*a^2*b*tan(d*x)^3*tan(c)^3 + 36*B*a*b^2*tan(d*x)^3*
tan(c)^3 - 24*C*b^3*tan(d*x)^3*tan(c)^3 - 18*C*a^2*b*tan(d*x)^2*tan(c)^4 - 18*B*a*b^2*tan(d*x)^2*tan(c)^4 + 6*
C*b^3*tan(d*x)^2*tan(c)^4 + 12*C*a*b^2*tan(d*x)^4*tan(c) + 4*B*b^3*tan(d*x)^4*tan(c) + 36*B*a^3*log(4*(tan(d*x
)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))
*tan(d*x)^2*tan(c)^2 - 108*C*a^2*b*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + ta
n(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^2*tan(c)^2 - 108*B*a*b^2*log(4*(tan(d*x)^4*tan(c)^2
 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^2*
tan(c)^2 + 36*C*b^3*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*ta
n(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)^2*tan(c)^2 - 36*C*a^3*tan(d*x)^3*tan(c)^2 - 108*B*a^2*b*tan(d*x)^3
*tan(c)^2 + 144*C*a*b^2*tan(d*x)^3*tan(c)^2 + 48*B*b^3*tan(d*x)^3*tan(c)^2 - 36*C*a^3*tan(d*x)^2*tan(c)^3 - 10
8*B*a^2*b*tan(d*x)^2*tan(c)^3 + 144*C*a*b^2*tan(d*x)^2*tan(c)^3 + 48*B*b^3*tan(d*x)^2*tan(c)^3 + 12*C*a*b^2*ta
n(d*x)*tan(c)^4 + 4*B*b^3*tan(d*x)*tan(c)^4 - 3*C*b^3*tan(d*x)^4 - 48*C*a^3*d*x*tan(d*x)*tan(c) - 144*B*a^2*b*
d*x*tan(d*x)*tan(c) + 144*C*a*b^2*d*x*tan(d*x)*tan(c) + 48*B*b^3*d*x*tan(d*x)*tan(c) + 36*C*a^2*b*tan(d*x)^3*t
an(c) + 36*B*a*b^2*tan(d*x)^3*tan(c) - 24*C*b^3*tan(d*x)^3*tan(c) - 36*C*a^2*b*tan(d*x)^2*tan(c)^2 - 36*B*a*b^
2*tan(d*x)^2*tan(c)^2 + 12*C*b^3*tan(d*x)^2*tan(c)^2 + 36*C*a^2*b*tan(d*x)*tan(c)^3 + 36*B*a*b^2*tan(d*x)*tan(
c)^3 - 24*C*b^3*tan(d*x)*tan(c)^3 - 3*C*b^3*tan(c)^4 - 12*C*a*b^2*tan(d*x)^3 - 4*B*b^3*tan(d*x)^3 - 24*B*a^3*l
og(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(t
an(c)^2 + 1))*tan(d*x)*tan(c) + 72*C*a^2*b*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c
)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)*tan(c) + 72*B*a*b^2*log(4*(tan(d*x)^4*tan(c
)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)
*tan(c) - 24*C*b^3*log(4*(tan(d*x)^4*tan(c)^2 - 2*tan(d*x)^3*tan(c) + tan(d*x)^2*tan(c)^2 + tan(d*x)^2 - 2*tan
(d*x)*tan(c) + 1)/(tan(c)^2 + 1))*tan(d*x)*tan(c) + 36*C*a^3*tan(d*x)^2*tan(c) + 108*B*a^2*b*tan(d*x)^2*tan(c)
 - 144*C*a*b^2*tan(d*x)^2*tan(c) - 48*B*b^3*tan(d*x)^2*tan(c) + 36*C*a^3*tan(d*x)*tan(c)^2 + 108*B*a^2*b*tan(d
*x)*tan(c)^2 - 144*C*a*b^2*tan(d*x)*tan(c)^2 - 48*B*b^3*tan(d*x)*tan(c)^2 - 12*C*a*b^2*tan(c)^3 - 4*B*b^3*tan(
c)^3 + 12*C*a^3*d*x + 36*B*a^2*b*d*x - 36*C*a*b^2*d*x - 12*B*b^3*d*x - 18*C*a^2*b*tan(d*x)^2 - 18*B*a*b^2*tan(
d*x)^2 + 6*C*b^3*tan(d*x)^2 + 36*C*a^2*b*tan(d*x)*tan(c) + 36*B*a*b^2*tan(d*x)*tan(c) - 24*C*b^3*tan(d*x)*tan(
c) - 18*C*a^2*b*tan(c)^2 - 18*B*a*b^2*tan(c)^2 ...

________________________________________________________________________________________

Mupad [B]
time = 8.83, size = 181, normalized size = 1.10 \begin {gather*} x\,\left (-C\,a^3-3\,B\,a^2\,b+3\,C\,a\,b^2+B\,b^3\right )-\frac {{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (\frac {C\,b^3}{2}-\frac {3\,a\,b\,\left (B\,b+C\,a\right )}{2}\right )}{d}-\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (-C\,a^3-3\,B\,a^2\,b+3\,C\,a\,b^2+B\,b^3\right )}{d}+\frac {\ln \left ({\mathrm {tan}\left (c+d\,x\right )}^2+1\right )\,\left (\frac {B\,a^3}{2}-\frac {3\,C\,a^2\,b}{2}-\frac {3\,B\,a\,b^2}{2}+\frac {C\,b^3}{2}\right )}{d}+\frac {{\mathrm {tan}\left (c+d\,x\right )}^3\,\left (\frac {B\,b^3}{3}+C\,a\,b^2\right )}{d}+\frac {C\,b^3\,{\mathrm {tan}\left (c+d\,x\right )}^4}{4\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*tan(c + d*x) + C*tan(c + d*x)^2)*(a + b*tan(c + d*x))^3,x)

[Out]

x*(B*b^3 - C*a^3 - 3*B*a^2*b + 3*C*a*b^2) - (tan(c + d*x)^2*((C*b^3)/2 - (3*a*b*(B*b + C*a))/2))/d - (tan(c +
d*x)*(B*b^3 - C*a^3 - 3*B*a^2*b + 3*C*a*b^2))/d + (log(tan(c + d*x)^2 + 1)*((B*a^3)/2 + (C*b^3)/2 - (3*B*a*b^2
)/2 - (3*C*a^2*b)/2))/d + (tan(c + d*x)^3*((B*b^3)/3 + C*a*b^2))/d + (C*b^3*tan(c + d*x)^4)/(4*d)

________________________________________________________________________________________